Aliases: (C2×C62)⋊4C4, C23⋊(C32⋊C4), C62⋊C4⋊3C2, C32⋊3(C23⋊C4), C62.10(C2×C4), C2.10(C62⋊C4), (C2×C3⋊Dic3)⋊3C4, (C2×C3⋊S3).16D4, C22.4(C2×C32⋊C4), (C2×C32⋊7D4).3C2, (C3×C6).20(C22⋊C4), (C22×C3⋊S3).5C22, SmallGroup(288,434)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3×C6 — C2×C3⋊S3 — C22×C3⋊S3 — C62⋊C4 — (C2×C62)⋊C4 |
Generators and relations for (C2×C62)⋊C4
G = < a,b,c,d | a2=b6=c6=d4=1, ab=ba, ac=ca, dad-1=ab3c3, bc=cb, dbd-1=b-1c, dcd-1=b4c >
Subgroups: 664 in 106 conjugacy classes, 16 normal (12 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C2×C4, D4, C23, C23, C32, Dic3, D6, C2×C6, C22⋊C4, C2×D4, C3⋊S3, C3×C6, C3×C6, C2×Dic3, C3⋊D4, C22×S3, C22×C6, C23⋊C4, C3⋊Dic3, C32⋊C4, C2×C3⋊S3, C2×C3⋊S3, C62, C62, C2×C3⋊D4, C2×C3⋊Dic3, C32⋊7D4, C2×C32⋊C4, C22×C3⋊S3, C2×C62, C62⋊C4, C2×C32⋊7D4, (C2×C62)⋊C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C22⋊C4, C23⋊C4, C32⋊C4, C2×C32⋊C4, C62⋊C4, (C2×C62)⋊C4
Character table of (C2×C62)⋊C4
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 4A | 4B | 4C | 4D | 4E | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 6K | 6L | 6M | 6N | |
size | 1 | 1 | 2 | 4 | 18 | 18 | 4 | 4 | 36 | 36 | 36 | 36 | 36 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -i | 1 | -i | i | i | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ6 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | i | 1 | i | -i | -i | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -i | -1 | i | -i | i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | i | -1 | -i | i | -i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ9 | 2 | 2 | -2 | 0 | -2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | -2 | -2 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | -2 | 0 | 2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | -2 | -2 | orthogonal lifted from D4 |
ρ11 | 4 | 4 | 4 | 4 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | -2 | -2 | 1 | -2 | 1 | -2 | -2 | 1 | -2 | 1 | -2 | orthogonal lifted from C32⋊C4 |
ρ12 | 4 | 4 | 4 | -4 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 2 | 2 | -1 | 2 | -1 | 2 | -2 | 1 | -2 | 1 | -2 | orthogonal lifted from C2×C32⋊C4 |
ρ13 | 4 | 4 | 4 | 4 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | 1 | 1 | -2 | 1 | -2 | 1 | 1 | -2 | 1 | -2 | 1 | orthogonal lifted from C32⋊C4 |
ρ14 | 4 | 4 | -4 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 1 | 0 | 0 | -3 | 0 | -3 | 0 | 2 | -1 | -2 | -1 | 2 | orthogonal lifted from C62⋊C4 |
ρ15 | 4 | 4 | -4 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | -3 | -3 | 1 | 0 | 0 | 3 | 0 | 3 | 0 | 2 | -1 | -2 | -1 | 2 | orthogonal lifted from C62⋊C4 |
ρ16 | 4 | -4 | 0 | 0 | 0 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ17 | 4 | 4 | -4 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -3 | 3 | 0 | -3 | 0 | 3 | -1 | 2 | 1 | 2 | -1 | orthogonal lifted from C62⋊C4 |
ρ18 | 4 | 4 | -4 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 3 | -3 | 0 | 3 | 0 | -3 | -1 | 2 | 1 | 2 | -1 | orthogonal lifted from C62⋊C4 |
ρ19 | 4 | 4 | 4 | -4 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -1 | -1 | 2 | -1 | 2 | -1 | 1 | -2 | 1 | -2 | 1 | orthogonal lifted from C2×C32⋊C4 |
ρ20 | 4 | -4 | 0 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | √-3 | -√-3 | -1 | 0 | 2√-3 | √-3 | 0 | -√-3 | -2√-3 | 0 | -3 | 2 | 3 | 0 | complex faithful |
ρ21 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | -2√-3 | 2√-3 | 2 | -√-3 | √-3 | 0 | √-3 | 0 | -√-3 | -3 | 0 | -1 | 0 | 3 | complex faithful |
ρ22 | 4 | -4 | 0 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | -√-3 | √-3 | -1 | 0 | -2√-3 | -√-3 | 0 | √-3 | 2√-3 | 0 | -3 | 2 | 3 | 0 | complex faithful |
ρ23 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 2√-3 | -2√-3 | 2 | √-3 | -√-3 | 0 | -√-3 | 0 | √-3 | -3 | 0 | -1 | 0 | 3 | complex faithful |
ρ24 | 4 | -4 | 0 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | -√-3 | √-3 | -1 | 2√-3 | 0 | √-3 | -2√-3 | -√-3 | 0 | 0 | 3 | 2 | -3 | 0 | complex faithful |
ρ25 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -√-3 | -√-3 | 2√-3 | √-3 | -2√-3 | √-3 | 3 | 0 | -1 | 0 | -3 | complex faithful |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | √-3 | √-3 | -2√-3 | -√-3 | 2√-3 | -√-3 | 3 | 0 | -1 | 0 | -3 | complex faithful |
ρ27 | 4 | -4 | 0 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | √-3 | -√-3 | -1 | -2√-3 | 0 | -√-3 | 2√-3 | √-3 | 0 | 0 | 3 | 2 | -3 | 0 | complex faithful |
(7 10)(8 11)(9 12)(19 22)(20 23)(21 24)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
(1 4)(2 5)(3 6)(7 10)(8 11)(9 12)(13 18 17 16 15 14)(19 24 23 22 21 20)
(1 23 8 16)(2 19 7 14)(3 21 9 18)(4 20 11 13)(5 22 10 17)(6 24 12 15)
G:=sub<Sym(24)| (7,10)(8,11)(9,12)(19,22)(20,23)(21,24), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,18,17,16,15,14)(19,24,23,22,21,20), (1,23,8,16)(2,19,7,14)(3,21,9,18)(4,20,11,13)(5,22,10,17)(6,24,12,15)>;
G:=Group( (7,10)(8,11)(9,12)(19,22)(20,23)(21,24), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,18,17,16,15,14)(19,24,23,22,21,20), (1,23,8,16)(2,19,7,14)(3,21,9,18)(4,20,11,13)(5,22,10,17)(6,24,12,15) );
G=PermutationGroup([[(7,10),(8,11),(9,12),(19,22),(20,23),(21,24)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)], [(1,4),(2,5),(3,6),(7,10),(8,11),(9,12),(13,18,17,16,15,14),(19,24,23,22,21,20)], [(1,23,8,16),(2,19,7,14),(3,21,9,18),(4,20,11,13),(5,22,10,17),(6,24,12,15)]])
G:=TransitiveGroup(24,584);
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
(1 6 2 4 3 5)(7 12 8 10 9 11)(13 16)(14 17)(15 18)(19 22)(20 23)(21 24)
(1 13)(2 17 3 15)(4 16)(5 14 6 18)(7 22 10 19)(8 20 12 21)(9 24 11 23)
G:=sub<Sym(24)| (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,6,2,4,3,5)(7,12,8,10,9,11)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24), (1,13)(2,17,3,15)(4,16)(5,14,6,18)(7,22,10,19)(8,20,12,21)(9,24,11,23)>;
G:=Group( (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,6,2,4,3,5)(7,12,8,10,9,11)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24), (1,13)(2,17,3,15)(4,16)(5,14,6,18)(7,22,10,19)(8,20,12,21)(9,24,11,23) );
G=PermutationGroup([[(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)], [(1,6,2,4,3,5),(7,12,8,10,9,11),(13,16),(14,17),(15,18),(19,22),(20,23),(21,24)], [(1,13),(2,17,3,15),(4,16),(5,14,6,18),(7,22,10,19),(8,20,12,21),(9,24,11,23)]])
G:=TransitiveGroup(24,620);
Matrix representation of (C2×C62)⋊C4 ►in GL4(𝔽7) generated by
6 | 6 | 5 | 6 |
4 | 0 | 1 | 3 |
1 | 1 | 6 | 5 |
1 | 6 | 3 | 2 |
2 | 2 | 5 | 0 |
1 | 3 | 3 | 3 |
1 | 4 | 2 | 3 |
5 | 5 | 2 | 4 |
3 | 6 | 5 | 6 |
4 | 4 | 1 | 3 |
1 | 1 | 3 | 5 |
1 | 6 | 3 | 6 |
2 | 5 | 4 | 5 |
3 | 0 | 6 | 3 |
4 | 4 | 2 | 6 |
2 | 5 | 1 | 3 |
G:=sub<GL(4,GF(7))| [6,4,1,1,6,0,1,6,5,1,6,3,6,3,5,2],[2,1,1,5,2,3,4,5,5,3,2,2,0,3,3,4],[3,4,1,1,6,4,1,6,5,1,3,3,6,3,5,6],[2,3,4,2,5,0,4,5,4,6,2,1,5,3,6,3] >;
(C2×C62)⋊C4 in GAP, Magma, Sage, TeX
(C_2\times C_6^2)\rtimes C_4
% in TeX
G:=Group("(C2xC6^2):C4");
// GroupNames label
G:=SmallGroup(288,434);
// by ID
G=gap.SmallGroup(288,434);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,28,141,219,675,9413,691,12550,2372]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^6=c^6=d^4=1,a*b=b*a,a*c=c*a,d*a*d^-1=a*b^3*c^3,b*c=c*b,d*b*d^-1=b^-1*c,d*c*d^-1=b^4*c>;
// generators/relations
Export